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1. Introduction: 

 The concept of fuzzy sets and intuitionistic fuzzy sets was introduced by Zadeh [24] in 1965 and 

Atanassov [4] in 1986. In 1970, Levine [11] initiated the study of generalized closed sets. The theory of fuzzy 

topology was introduced by C.L.Chang [6] in 1967. The theory of vague sets was first proposed by Gau and 

Buehrer [9] as an extension of fuzzy set theory. Then, Smarandache[23] introduces the neutrosophic 

components T, I, F which represent the membership, indeterminacy, and non-membership values respectively, 

where ]−0,1+[ is the non-standard unit interval in 1995 (published in 1998). Shawkat Alkhazaleh[22] in 2015 

introduced the concept of neutrosophic vague set as a combination of neutrosophic set and vague set. In this 

paper we introduce the concept of neutrosophic vague generalized pre-continuous mapping and neutrosophic 

vague generalized pre-irresolute mappings and also compare with the other existing functions with counter 

examples. Also its properties are discussed. 

2. Preliminaries 

Definition 2.1:[22] A neutrosophic vague set NVA (NVS in short) on the universe of discourse X  written as 

      XxxFxIxTxA
NVNVNV AAANV  ;ˆ;ˆ;ˆ; , whose truth membership, indeterminacy membership and 

false membership functions is defined as:  

             FFxFIIxITTxT
NVNVNV AAA ,ˆ,,ˆ,,ˆ  

where, 

1) 
  FT 1  

2) 
  TF 1  and 

3) 
  20 FIT . 

Definition 2.2:[22] Let NVA  and NVB  be two NVSs of the universe U . If    ;ˆˆ, iBiAi uTuTUu
NVNV



       ,ˆˆ;ˆˆ
iBiAiBiA uFuFuIuI

NVNVNVNV
 then the NVS NVA  is included by NVB , denoted by 

,NVNV BA   where .1 ni   

Definition 2.3:[22] The complement of  NVS NVA  is denoted by 
c

NVA  and is defined by  

           .1,1ˆ,1,1ˆ,1,1ˆ   FFxFIIxITTxT c

A

c

A

c

A NVNVNV
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Definition 2.4:[22] Let NVA  be NVS of the universe U where Uui  ,        ;0,0ˆ;1,1ˆ  xIxT
NVNV AA

   .0,0ˆ xF
NVA  Then NVA  is called a unit NVS( NV1  in short), where .1 ni   

Definition 2.5:[22] Let NVA  be NVS of the universe U where Uui  ,        ;1,1ˆ;0,0ˆ  xIxT
NVNV AA

   .1,1ˆ xF
NVA  Then NVA  is called a zero NVS( NV0  in short), where .1 ni   

Definition 2.6:[22] The union of two NVSs NVA  and NVB  is NVS NVC , written as NVNVNV BAC  , 

whose truth-membership, indeterminacy-membership and false-membership functions are related to those of 

NVA  and NVB  given by, 

       
xNVxNVxNVxNVNV BABAC TTTTxT ,max,,maxˆ  

       
xNVxNVxNVxNVNV BABAC IIIIxI ,min,,minˆ  

       
xNVxNVxNVxNVNV BABAC FFFFxF ,min,,minˆ . 

Definition 2.7:[22] The intersection of two NVSs NVA  and NVB  is NVS NVC , written as 

NVNVNV BAC  , whose truth-membership, indeterminacy-membership and false-membership functions 

are related to those of NVA  and NVB  given by, 

       
xNVxNVxNVxNVNV BABAC TTTTxT ,min,,minˆ  

       
xNVxNVxNVxNVNV BABAC IIIIxI ,max,,maxˆ  

       
xNVxNVxNVxNVNV BABAC FFFFxF ,max,,maxˆ . 

Definition 2.8:[22] Let NVA  and NVB  be two NVSs of the universe U . If ,Uui 

           ,ˆˆ;ˆˆ;ˆˆ
iBiAiBiAiBiA uFuFuIuIuTuT

NVNVNVNVNVNV
 then the NVS NVA  and NVB , are called 

equal, where .1 ni   

Definition 2.9: Let  ,X  be a topological space. A subset  A of  X  is called: 

i) semi closed set (SCS in short)[12] if    ,int AAcl   

ii) pre- closed set (PCS in short)[17] if    ,int AAcl   

iii) semi-pre closed set (SPCS in short)[1] if     ,intint AAcl   

iv)  -closed set ( CS in short)[20] if     ,int AAclcl   

v)  regular closed set (RCS in short)[24] if   .int AclA   

 

Definition 2.10: Let  ,X  be a topological space. A subset A  of  X  is called: 

i) generalized closed (briefly, g-closed) [11] if   UAcl  , whenever A ⊆U and U is open in X . 
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ii) generalized semi closed (briefly, gs-closed)[3] if   UAcl s whenever A ⊆U and U is open in X . 

iii) α-generalized closed (briefly, αg-closed) [13] if   UAcl  whenever A ⊆U and U is open in X . 

iv) generalized pre-closed (briefly, gp-closed) [14] if   UAcl p whenever A ⊆U and U is open in X . 

v) generalized semi-pre closed (briefly, gsp-closed) [8] if   UAcl sp whenever A ⊆U and U is open in X

. 

Definition 2.11: Let  ,X
 
and  ,Y

 
be any two topological spaces. A map     ,,: YXf   is said 

to be 

 semi-continuous [12] if  Vf 1
 is semi-closed set in  ,X

 
for every closed set V of  ,Y . 

 pre-continuous [17] if  Vf 1
 is pre-closed set in  ,X

 
for every closed set V of  ,Y . 

 semi pre-continuous [19] if  Vf 1
 is semi pre-closed set in  ,X

 
for every closed set V of  ,Y . 

  -continuous [16] if  Vf 1
 is  -closed set in  ,X

 
for every closed set V of  ,Y . 

 generalized continuous [5]  if  Vf 1
 is generalized closed set in  ,X

 
for every closed set V of  ,Y . 

 generalized semi-continuous [7] if  Vf 1
 is generalized semi-closed set in  ,X

 
for every closed set V

of  ,Y .  

 generalized pre-continuous [21] if  Vf 1
 is generalized pre-closed set in  ,X

 
for every closed set V

of  ,Y .  

 generalized semi pre-continuous [18] if  Vf 1
 is generalized semi pre-closed set in  ,X

 
for every 

closed set V of  ,Y .  

  -generalized continuous [10] if  Vf 1
 is  -generalized closed set in  ,X

 
for every closed set V of 

 ,Y . 

 generalized pre-irresolute [2] if  Vf 1
 is generalized pre-closed set in  ,X

 
for every generalized pre-

closed set V of  ,Y .  

Definition 2.12:[15] A neutrosophic vague topology (NVT in short) on X is a family   of neutrosophic vague 

sets (NVS in short) in X  satisfying the following axioms: 

 NVNV 1,0  

  21 GG  for any 21,GG  

     JiGG ii :,  

In this case the pair  ,X  is called a neutrosophic vague topological space (NVTS in short) and any NVS in 

  is known as a neutrosophic vague open set (NVOS in short) in X . 

The complement 
cA  of a NVOS in a NVTS  ,X  is called neutrosophic vague closed set (NVCS in short) in 

X . 

Definition 2.13:[15] A NVTS  ,X  is said to be neutrosophic vague 2/1gpT  space (NV 2/1gpT  in short) if 

every NVGPCS in X  is a NVCS in X .  
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Definition 2.14:[15] A NVTS  ,X  is said to be neutrosophic vague pgpT  space (NV pgpT  in short) if every 

NVGPCS in X  is a NVPCS in X . 

3. Neutrosophic Vague Continuous mapping: 

Definition 3.1: Let  ,X
 
and  ,Y

 
be any two neutrosophic vague topological spaces. A map 

    ,,: YXf   is said to be, 

 Neutrosophic vague continuous (NV continuous) if  Vf 1

 
is neutrosophic vague closed set in  ,X

 
for 

every neutrosophic vague closed set V of  ,Y . 

 neutrosophic vague semi-continuous (NVS continuous) if  Vf 1
 is neutrosophic vague semi-closed set in 

 ,X
 
for every neutrosophic vague closed set V of  ,Y . 

 neutrosophic vague pre-continuous (NVP continuous) if  Vf 1
 is neutrosophic vague pre-closed set in 

 ,X
 
for every neutrosophic vague closed set V of  ,Y . 

 neutrosophic vague semi pre-continuous (NVP continuous) if  Vf 1
 is neutrosophic vague semi pre-

closed set in  ,X
 
for every neutrosophic vague closed set V of  ,Y . 

 neutrosophic vague  -continuous (NV -continuous) if  Vf 1
 is neutrosophic vague  -closed set in 

 ,X
 
for every neutrosophic vague closed set V of  ,Y . 

 neutrosophic vague regular continuous (NVR continuous) if  Vf 1
 is neutrosophic vague regular closed 

set in  ,X
 
for every neutrosophic vague closed set V of  ,Y . 

 neutrosophic vague generalized continuous (NVG continuous) if  Vf 1
 is neutrosophic vague generalized 

closed set in  ,X
 
for every neutrosophic vague closed set V of  ,Y . 

 neutrosophic vague generalized semi-continuous (NVGS continuous) if  Vf 1
 is neutrosophic vague 

generalized semi-closed set in  ,X
 
for every neutrosophic vague closed set V of  ,Y .  

 neutrosophic vague generalized semi pre-continuous (NVGSP continuous) if  Vf 1
 is neutrosophic vague 

generalized semi-closed set in  ,X
 
for every neutrosophic vague closed set V of  ,Y .  

 neutrosophic vague  -generalized continuous (NV G continuous) if  Vf 1
 is neutrosophic vague  -

generalized closed set in  ,X
 
for every neutrosophic vague closed set V of  ,Y . 

4. Neutrosophic Vague Generalized Pre-Continuous Mappings: 

Definition 4.1: A map     ,,: YXf   is said to be neutrosophic vague generalized pre-continuous 

(NVGP continuous in short) mapping if  Af 1
 is NVGPCS in  ,X

 
for every neutrosohpic vague closed 

set A of  ,Y . 
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Example 4.2: Let  ,,baX   vuY ,  and 

           

           

           
.

8.0,7.0;9.0,8.0;3.0,2.0
,

9.0,7.0;8.0,6.0;3.0,1.0
,

,
7.0,6.0;7.0,5.0;4.0,3.0

,
8.0,5.0;6.0,5.0;5.0,2.0

,

,
4.0,1.0;4.0,3.0;9.0,6.0

,
5.0,3.0;4.0,2.0;7.0,5.0

,

3

2

1































vu
yG

ba
xG

ba
xG

 

Then  NVNV GG 1,,,0 21
 
and  NVNV G 1,,0 3

 
are NVTs on X and Y respectively. Define a 

mapping     ,,: YXf 
 
by     .and vbfuaf   Then f is a NVGP continuous mapping. 

Theorem 4.3: Let  ,X
 
and  ,Y be any two vague topological spaces. For any vague continuous function 

    ,,: YXf   we have the following results. 

i) Every NV continuous mapping is a NVG continuous mapping. 

ii) Every NV continuous mapping is a NV  continuous mapping. 

iii) Every NV continuous mapping is a NVP continuous mapping. 

iv) Every NV continuous mapping is a NVP continuous mapping. 

v) Every NVR continuous mapping is a NV continuous mapping. 

vi) Every NV  continuous mapping is a NVS continuous mapping. 

vii) Every NVP continuous mapping is a NVSP continuous mapping. 

viii) Every NV continuous mapping is a NVGP continuous mapping. 

ix) Every NVG continuous mapping is a NVGP continuous mapping. 

x) Every NVP continuous mapping is a NVGP continuous mapping. 

xi) Every NV  continuous mapping is a NVGP continuous mapping. 

xii) Every NVR continuous mapping is a NVGP continuous mapping. 

xiii) Every GNV  continuous mapping is a NVGP continuous mapping. 

xiv) Every NVGP continuous mapping is a NVSP continuous mapping. 

xv) Every NVGP continuous mapping is a NVGSP continuous mapping. 

Proof: (i)  Let     ,,: YXf 
 
be NV continuous mapping. Let A  be NVCS in Y . Then  Af 1

 
is 

NVCS in X . Since every NVCS is NVGCS,  Af 1
 is NVGCS in X . Hence f is NVG continuous 

mapping. 

 (ii) Let     ,,: YXf 
 
be NV continuous mapping. Let A  be  NVCS in Y . Then  Af 1

is 

NVCS in X . Since every NVCS is NV CS,  Af 1
 is NV CS in X . Hence f is NV  continuous 

mapping. 

 (iii) Let     ,,: YXf 
 
be NV continuous mapping. Let A be NVCS in Y . Then  Af 1

is 

NVPCS in X . Since every NVCS is NVPCS,  Af 1
 is NVPCS in X . Hence f is NVP continuous 

mapping. 

 The proof of (iv) to (xv) are similar. 
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Remark 4.4: The converse of the above Theorem 4.3 need not be true as shown by the following examples. 

Example 4.5: Let  ,,, cbaX   wvuY ,,  and 

                 

                 

                 
.

4.0,2.0;3.0,2.0;8.0,6.0
,

3.0,1.0;5.0,1.0;9.0,7.0
,

2.0,1.0;4.0,2.0;9.0,8.0
,

,
4.0,2.0;5.0,2.0;8.0,6.0

,
3.0,1.0;2.0,1.0;9.0,7.0

,
2.0,1.0;3.0,1.0;9.0,8.0

,

,
5.0,3.0;5.0,4.0;7.0,5.0

,
4.0,1.0;5.0,2.0;9.0,6.0

,
5.0,4.0;5.0,3.0;6.0,5.0

,

3

2

1































wvu
yG

cba
xG

cba
xG

Then  NVNV GG 1,,,0 21
 
and  NVNV G 1,,0 3

 
are NVTs on X and Y respectively. Define a 

mapping     ,,: YXf 
 
by       .and, wcfvbfuaf    Then f is NVG continuous mapping 

but not NV continuous mapping, since 

                  








8.0,6.0;8.0,7.0;4.0,2.0

,
9.0,7.0;9.0,5.0;3.0,1.0

,
9.0,8.0;8.0,6.0;2.0,1.0

,3

wvu
yGc

 
is NVCS in Y , but  cGf 3

1
 is not NVCS in X . 

Example 4.6: Let  ,,baX   vuY ,  and  

           

           

           
.

3.0,1.0;4.0,1.0;9.0,7.0
,

4.0,2.0;5.0,2.0;8.0,6.0
,

,
7.0,5.0;5.0,2.0;5.0,3.0

,
8.0,4.0;4.0,1.0;6.0,2.0

,

,
8.0,5.0;5.0,3.0;5.0,2.0

,
9.0,7.0;7.0,5.0;3.0,1.0

,

3

2

1































vu
yG

ba
xG

ba
xG

 

Then  NVNV GG 1,,,0 21
 
and  NVNV G 1,,0 3

 
are NVTs on X and Y respectively. Define a 

mapping     ,,: YXf 
 
by     .and vbfuaf   Then f is NV  continuous mapping but not 

NV continuous mapping, since 
            









9.0,7.0;9.0,6.0;3.0,1.0

,
8.0,6.0;8.0,5.0;4.0,2.0

,3

vu
yGc

 

is NVCS in Y , but  cGf 3

1
 is not NVCS in X . 
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 Example 4.7: Let  ,,, cbaX   wvuY ,,  and 

                 

                 
.

9.0,7.0;9.0,7.0;3.0,1.0
,

8.0,6.0;8.0,7.0;4.0,2.0
,

9.0,8.0;9.0,6.0;2.0,1.0
,

,
7.0,5.0;7.0,4.0;5.0,3.0

,
6.0,5.0;8.0,6.0;5.0,4.0

,
7.0,3.0;6.0,5.0;7.0,3.0

,

2

1





















wvu
yG

cba
xG

Then  NVNV G 1,,0 1
 
and  NVNV G 1,,0 2

 
are NVTs on X and Y respectively. Define a mapping

    ,,: YXf 
 
by       .and, wcfvbfuaf   Then f is NVP continuous mapping but not 

NV continuous mapping and NV  continuous mapping, since 

                  








3.0,1.0;3.0,1.0;9.0,7.0

,
4.0,2.0;3.0,2.0;8.0,6.0

,
2.0,1.0;4.0,1.0;9.0,8.0

,2

wvu
yGc

 
is NVCS in Y , but  cGf 2

1
 is not NVCS and NV CS in X . 

Example 4.8: Let  ,,, cbaX   wvuY ,,  and 

                 

                 
.

5.0,4.0;4.0,3.0;6.0,5.0
,

4.0,1.0;4.0,2.0;9.0,6.0
,

3.0,2.0;3.0,1.0;8.0,7.0
,

,
5.0,4.0;4.0,3.0;6.0,5.0

,
4.0,1.0;4.0,2.0;9.0,6.0

,
3.0,2.0;3.0,1.0;8.0,7.0

,

2

1





















wvu
yG

cba
xG

Then  NVNV G 1,,0 1
 
and  NVNV G 1,,0 2

 
are NVTs on X and Y  respectively. Define a mapping

    ,,: YXf 
 
by     .and vbfuaf   Then f is NV continuous mapping but not NVR 

continuous mapping, since 

                  








6.0,5.0;7.0,6.0;5.0,4.0

,
9.0,6.0;8.0,6.0;4.0,1.0

,
8.0,7.0;9.0,7.0;3.0,2.0

,2

wvu
yGc

 
is NVCS in Y , but  cGf 2

1
 is not NVRCS in X . 

Example 4.9: Let  ,,, cbaX   wvuY ,,  and 

                 

                 
.

5.0,3.0;6.0,1.0;7.0,5.0
,

3.0,2.0;4.0,2.0;8.0,7.0
,

5.0,4.0;2.0,1.0;6.0,5.0
,

,
8.0,7.0;9.0,5.0;3.0,2.0

,
9.0,8.0;9.0,7.0;2.0,1.0

,
8.0,6.0;9.0,8.0;4.0,2.0

,

2

1





















wvu
yG

cba
xG

Then  NVNV G 1,,0 1
 
and  NVNV G 1,,0 2

 
are NVTs on X and Y respectively. Define a mapping

    ,,: YXf 
 
by     .and vbfuaf   Then f is NVS continuous mapping but not NV  

continuous mapping, since 

                  








7.0,5.0;9.0,4.0;5.0,3.0

,
8.0,7.0;8.0,6.0;3.0,2.0

,
6.0,5.0;9.0,8.0;5.0,4.0

,2

wvu
yGc

 
is NVCS in Y , but  cGf 2

1
 is not NV CS in X . 

http://www.ijesm.co.in/
http://www.ijesm.co.in/


International Journal of Engineering, Science and Mathematics 

Vol. 7Issue 2, February 2018,  
ISSN: 2320-0294 Impact Factor: 6.765 
Journal Homepage: http://www.ijesm.co.in, Email: ijesmj@gmail.com          Double-

Blind Peer Reviewed Refereed Open Access International Journal - Included in the International Serial Directories Indexed & Listed at: 
Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell’s Directories of Publishing Opportunities, U.S.A 

  

235 International Journal of Engineering, Science and Mathematics 
http://www.ijesm.co.in, Email: ijesmj@gmail.com 

 
 

 Example 4.10: Let  ,,, cbaX   wvuY ,,  and 

                 

                 

                 
.

7.0,5.0;6.0,5.0;5.0,3.0
,

6.0,2.0;5.0,3.0;8.0,4.0
,

5.0,3.0;4.0,3.0;7.0,5.0
,

,
6.0,5.0;8.0,7.0;5.0,4.0

,
9.0,5.0;8.0,6.0;5.0,1.0

,
8.0,6.0;9.0,7.0;4.0,2.0

,

,
2.0,0;4.0,1.0;1,8.0

,
3.0,1.0;4.0,2.0;9.0,7.0

,
2.0,1.0;3.0,1.0;9.0,8.0

,

3

2

1































wvu
yG

cba
xG

cba
xG

Then  NVNV GG 1,,,0 21
 
and  NVNV G 1,,0 3

 
are NVTs on X and Y respectively. Define a 

mapping     ,,: YXf 
 
by       .and, wcfvbfuaf   Then f is NVSP continuous mapping 

but not NVP continuous mapping, since 

                  








5.0,3.0;5.0,4.0;7.0,5.0

,
8.0,4.0;7.0,5.0;6.0,2.0

,
7.0,5.0;7.0,6.0;5.0,3.0

,3

wvu
yGc

 
is NVCS in Y , but  cGf 3

1
 is not NVPCS in X . 

Example 4.11: Let  ,,, cbaX   wvuY ,,  and 

                 

                 

                 
.

4.0,2.0;6.0,2.0;8.0,6.0
,

3.0,1.0;4.0,1.0;9.0,7.0
,

2.0,1.0;4.0,2.0;9.0,8.0
,

,
5.0,4.0;5.0,4.0;6.0,5.0

,
6.0,2.0;3.0,1.0;8.0,4.0

,
7.0,5.0;6.0,4.0;5.0,3.0

,

,
3.0,2.0;4.0,1.0;8.0,7.0

,
3.0,1.0;2.0,1.0;9.0,7.0

,
5.0,4.0;3.0,1.0;6.0,5.0

,

3

2

1































wvu
yG

cba
xG

cba
xG

Then  NVNV GG 1,,,0 21
 
and  NVNV G 1,,0 3

 
are NVTs on X and Y respectively. Define a 

mapping     ,,: YXf 
 
by       .and, wcfvbfuaf   Then f is NVGP continuous 

mapping but not NV continuous mapping and NVG continuous mapping, since 

                  








8.0,6.0;8.0,4.0;4.0,2.0

,
9.0,7.0;9.0,6.0;3.0,1.0

,
9.0,8.0;8.0,6.0;2.0,1.0

,3

wvu
yGc

 
is NVCS in Y , but  cGf 3

1
 is not NVCS and NVGCS in X . 

Example 4.12: Let  ,,, cbaX   wvuY ,,  and 

                 

                 
.

8.0,7.0;9.0,7.0;3.0,2.0
,

9.0,8.0;9.0,7.0;2.0,1.0
,

9.0,8.0;8.0,6.0;2.0,1.0
,

,
4.0,2.0;4.0,2.0;8.0,6.0

,
2.0,1.0;4.0,3.0;9.0,8.0

,
3.0,1.0;5.0,2.0;9.0,7.0

,

2

1





















wvu
yG

cba
xG

Then  NVNV G 1,,0 1
 
and  NVNV G 1,,0 2

 
are NVTs on X and Y respectively. Define a mapping
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    ,,: YXf 
 
by       .and, wcfvbfuaf   Then f is NVGP continuous mapping but not 

NVP continuous mapping, since 

                  








2.0,1.0;3.0,1.0;8.0,7.0

,
2.0,1.0;3.0,1.0;9.0,8.0

,
2.0,1.0;4.0,2.0;9.0,8.0

,2

wvu
yGc

 
is NVCS in Y , but  cGf 2

1
 is not NVPCS in X . 

Example 4.13: Let  ,,, cbaX   wvuY ,,  and 

                 

                 

                 
.

3.0,1.0;4.0,3.0;9.0,7.0
,

2.0,0;3.0,2.0;1,8.0
,

2.0,1.0;3.0,1.0;9.0,8.0
,

,
7.0,6.0;6.0,5.0;4.0,3.0

,
8.0,6.0;8.0,7.0;4.0,2.0

,
9.0,7.0;9.0,6.0;3.0,1.0

,

,
7.0,5.0;6.0,5.0;5.0,3.0

,
6.0,5.0;8.0,6.0;5.0,4.0

,
8.0,7.0;7.0,6.0;3.0,2.0

,

3

2

1































wvu
yG

cba
xG

cba
xG

Then  NVNV GG 1,,,0 21
 
and  NVNV G 1,,0 3

 
are NVTs on X and Y respectively. Define a 

mapping     ,,: YXf 
 
by       .and, wcfvbfuaf   Then f is NVGP continuous 

mapping but not NV continuous mapping, NVR continuous mapping and NV G continuous mapping since 

                  








9.0,7.0;7.0,6.0;3.0,1.0

,
1,8.0;8.0,7.0;2.0,0

,
9.0,8.0;9.0,7.0;2.0,1.0

,3

wvu
yGc

 

is NVCS in Y , but  cGf 3

1
 is not NV CS, NVRCS and NV GCS in X . 

Example 4.14: Let  ,,, cbaX   wvuY ,,  and 

                 

                 
.

2.0,1.0;3.0,2.0;9.0,8.0
,

4.0,2.0;2.0,1.0;8.0,6.0
,

3.0,1.0;4.0,3.0;9.0,7.0
,

,
9.0,8.0;8.0,7.0;2.0,1.0

,
8.0,6.0;9.0,8.0;4.0,2.0

,
9.0,7.0;7.0,6.0;3.0,1.0

,

2

1





















wvu
yG

cba
xG

Then  NVNV G 1,,0 1
 
and  NVNV G 1,,0 2

 
are NVTs on X and Y respectively. Define a mapping

    ,,: YXf 
 
by       .and, wcfvbfuaf   Then f is NVSP continuous mapping and 

NVGSP continuous mapping but not NVGP continuous mapping, since 

                  








9.0,8.0;8.0,7.0;2.0,1.0

,
8.0,6.0;9.0,8.0;4.0,2.0

,
9.0,7.0;7.0,6.0;3.0,1.0

,2

wvu
yGc

 
is NVCS in Y , but  cGf 2

1
 is not NVGPCS in X . 

Proposition 4.15: NVS continuous mapping and NVGP continuous mapping are independent to each other. 
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Example 4.16: Let  ,,, cbaX   wvuY ,,  and 

                 

                 
.

4.0,2.0;4.0,3.0;8.0,6.0
,

3.0,1.0;3.0,2.0;9.0,7.0
,

6.0,3.0;2.0,1.0;7.0,4.0
,

,
8.0,6.0;7.0,6.0;4.0,2.0

,
9.0,7.0;8.0,7.0;3.0,1.0

,
7.0,4.0;9.0,8.0;6.0,3.0

,

2

1





















wvu
yG

cba
xG

Then  NVNV G 1,,0 1
 
and  NVNV G 1,,0 2

 
are NVTs on X and Y respectively. Define a mapping 

    ,,: YXf 
 
by       .and, wcfvbfuaf   Then f is NVS continuous mapping but not 

NVGP continuous mapping, since 

                  












8.0,6.0;7.0,6.0;4.0,2.0

,
9.0,7.0;8.0,7.0;3.0,1.0

,
7.0,4.0;9.0,8.0;6.0,3.0

,2

wvu
yGc

 
is NVCS in Y , but    12

1p GGfclNV c 
 in X . 

Example 4.17: Let  ,,baX   vuY ,  and   

           

           

           
.

9.0,8.0;7.0,6.0;2.0,1.0
,

3.0,2.0;2.0,1.0;8.0,7.0
,

,
7.0,4.0;9.0,7.0;6.0,3.0

,
6.0,5.0;9.0,8.0;5.0,4.0

,

,
5.0,4.0;2.0,1.0;6.0,5.0

,
4.0,3.0;3.0,2.0;7.0,6.0

,

3

2

1































vu
yG

ba
xG

ba
xG

 

Then  NVNV GG 1,,,0 21
 
and  NVNV G 1,,0 3

 
are NVTs on X and Y respectively. Define a 

mapping     ,,: YXf 
 
by     .and vbfuaf   Then f is NVGP continuous mapping but not 

NVS continuous mapping, since

            








2.0,1.0;4.0,3.0;9.0,8.0

,
8.0,7.0;9.0,8.0;3.0,2.0

,3

vu
yGc

 
is NVCS in Y , but  cGf 2

1
 

is not NVSCS in X . 

Proposition 4.18: NVGS continuous mapping and NVGP continuous mapping are independent to each other. 

Example 4.19: Let  ,,, cbaX   wvuY ,,  and  

                 

                 
.

3.0,2.0;5.0,3.0;8.0,7.0
,

2.0,1.0;3.0,2.0;9.0,8.0
,

4.0,2.0;4.0,1.0;8.0,6.0
,

,
8.0,7.0;7.0,5.0;3.0,2.0

,
9.0,8.0;8.0,7.0;2.0,1.0

,
8.0,6.0;9.0,6.0;4.0,2.0

,

2

1





















wvu
yG

cba
xG

Then  NVNV G 1,,0 1
 
and  NVNV G 1,,0 2

 
are NVTs on X and Y respectively. Define a mapping 
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    ,,: YXf 
 
by       .and, wcfvbfuaf   Then f is NVGS continuous mapping but not 

NVGP continuous mapping, since 

                  








8.0,7.0;7.0,5.0;3.0,2.0

,
9.0,8.0;8.0,7.0;2.0,1.0

,
8.0,6.0;9.0,6.0;4.0,2.0

,2

wvu
yGc

 
is NVCS in Y , but    12

1p GGfclNV c 
 in X . 

Example 4.20: Let  ,,baX   vuY ,  and  

           

           

           
.

2.0,1.0;4.0,1.0;9.0,8.0
,

5.0,4.0;3.0,1.0;6.0,5.0
,

,
2.0,1.0;6.0,2.0;9.0,8.0

,
3.0,1.0;5.0,2.0;9.0,7.0

,

,
5.0,2.0;7.0,6.0;8.0,5.0

,
6.0,3.0;8.0,5.0;7.0,4.0

,

3

2

1































vu
yG

ba
xG

ba
xG

 

Then  NVNV GG 1,,,0 21
 
and  NVNV G 1,,0 3

 
are NVTs on X and Y respectively. Define a 

mapping     ,,: YXf 
 
by     .and vbfuaf   Then f is NVGP continuous mapping but not 

NVGS continuous mapping, since 

            








9.0,8.0;9.0,6.0;2.0,1.0

,
6.0,5.0;9.0,7.0;5.0,4.0

,3

vu
yGc

 
is NVCS in Y , but 

   12

1s GGfclNV c 
 in X . 

Result 4.21: The relations between various types of neutrosophic vague continuity are given in the following 

diagram.  

                  

 

 

 

 

 

 

 

 

In this diagram by “A            B” we mean A implies B but not conversely and “A              B” means A and B are 

independent of each other. None of them is reversible “A           B”. 

NV G  C 

NV C 

NV  C 

NVGSP C 

NVP C NVG C 

NVSP C 

NVGS C 

NVR C 

NVS C 

NVGP C 
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Theorem 4.22: A mapping     ,,: YXf   is NVGP continuous mapping if and only if the inverse 

image of each NVOS in Y is NVGPOS in X . 

Proof: Necessity: Let A  be NVOS in Y . This implies 
cA  is NVCS in Y . Since f  is NVGP continuous 

mapping,  cAf 1
 is NVGPCS in X . Since     cc AfAf 11   ,  Af 1

 is NVGPOS in X . 

Sufficiency: The proof is obvious from the Definition 4.1. 

Theorem 4.23: Let     ,,: YXf 
 
be mapping and let  Af 1

 is NVRCS in X  for every NVCS A  

in Y . Then f  is NVGP continuous mapping but not conversely.  

Proof: Let A  be NVCS in Y . Then  Af 1
 is NVRCS in X . Since every NVRCS is NVGPCS,  Af 1

 is 

NVGPCS in X . Hence f  is NVGP continuous mapping. 

Theorem 4.24: Let     ,,: YXf   is NVGP continuous mapping, then f  is neutrosophic vague 

continuous mapping if X  is NV 1/2pT  space.  

Proof: Let A  be NVCS inY . Then  Af 1
 is NVGPCS in X , by hypothesis. Since X  is NV 1/2pT  space, 

 Af 1
 is NVCS in X . Hence f  is neutrosophic vague continuous mapping. 

Theorem 4.25: Let     ,,: YXf   is NVGP continuous mapping, then f  is NVP continuous mapping 

if X  is NV 1/2gpT  space.  

Proof: Let A be NVCS inY . Then  Af 1
 is NVGPCS in X , by hypothesis. Since X is NV 1/2gpT  space, 

 Af 1
 is NVPCS in X . Hence f  is NVP continuous mapping. 

Theorem 4.26: Let     ,,: YXf   be a mapping from NVTS X into NVTS Y . Then the following 

conditions are equivalent if  X  is NV 1/2gpT  space. 

i) f  is NVGP continuous mapping. 

ii)  Bf 1
 is NVGPCS in X  for every NVCS B  in Y . 

iii)       ANVclfAfNVNVcl 11int    for every NVS A  in Y . 

Proof: (i) (ii): It is obvious from the Definition 4.1. 

(ii) (iii): Let A  be NVS in Y . Then  ANVcl  is NVCS inY . By hypothesis,   ANVclf 1
 is  

NVGPCS in X . Since X  is NV 1/2gpT  space,   ANVclf 1
 is NVPCS. Therefore 

       ANVclfANVclfNVNVcl 11int   . Now 

        ANVclfNVNVclAfNVNVcl 11 intint     ANVclf 1 . 
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(iii) (i): Let A  be NVCS in Y . By hypothesis         AfANVclfAfNVNVcl 111int   . 

This implies  Af 1
 is NVPCS in X  and hence it is NVGPCS. Thus f

 
is NVGP continuous mapping.    

Theorem 4.27: Let     ,,: YXf   be mapping from NVTS X  into a NVTS Y . Then the following 

conditions are equivalent if  X  is a NV 1/2gpT  space. 

i) f  is NVGP continuous mapping. 

ii)  Af 1
 is NVGPOS in X  for every NVOS A  in Y . 

iii)       AfNVclNVANVf 11 intint    for every NVS A  in Y .   

Proof: (i) (ii): It is obvious. 

(ii) (iii): Let A  be NVS in Y . Then  ANV int  is NVOS inY . By hypothesis,   ANVf int1
 is 

NVGPOS in X . Since X  is NV 1/2gpT  space,   ANVf int1
 is NVPOS in X . Therefore 

           BfNVclNVBNVfNVclNVBNVf 111 intintintint   .  

(iii) (i): Let A  be NVCS in Y . Then its complement, say
cA  is NVOS in Y , then   cc AANV int . Now 

by hypothesis       cc AfNVclNVANVf 11 intint   . This implies 

     cc AfNVclNVAf 11 int   . Hence  cAf 1
 is a NVPOS in X . Since every NVPOS is 

NVGPOS,  cAf 1

 
is a NVGPOS in X . Thus  Af 1

 is a NVGPCS in X . Hence f  is NVGP continuous 

mapping.  

Theorem 4.28: A mapping     ,,: YXf   is NVGP continuous mapping if 

       ANVclfAfNVclNVNVcl 11int    for every NVS A  in Y . 

Proof: Let A be NVOS in Y  then 
cA is NVCS in Y . By hypothesis, 

         ccc AfANVclfAfNVclNVNVcl 111int   , since 
cA is NVCS. Now 

                .intintint 1111 cccc
AfAfAfNVclNVNVclAfNVNVclNV    This 

implies       AfNvNVclNVAf 11 intint   . Hence  Af 1
 is NV Os and hence it is NVGPOS. 

Therefore f  is NVGP continuous mapping, by theorem 4.22. 

Theorem 4.29: Let     ,,: YXf   be NVGP continuous mapping and     ,,: ZYg 
 
be 

neutrosophic vague continuous mapping, then     ,,: ZXfg 
 
is NVGP continuous mapping. 

Proof: Let A  be NVCS in Z . Then  Ag 1
 is NVCS in Y , by hypothesis. Since f  is NVGP continuous 

mapping,   Agf 11 
 is NVGPCS in X . Hence fg   is NVGP continuous mapping. 

Remark 4.30: The composition of two NVGP continuous mapping need not be NVGP continuous mapping and 

it is shown by the following example. 
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Example 4.31: Let      rqpZwvuYcbaX ,,and,,,,,   neutrosophic vague sets 321 and, GGG  

defined as follows: 

                 

                 

                 
.

7.0,6.0;5.0,3.0;4.0,3.0
,

5.0,2.0;7.0,4.0;8.0,5.0
,

6.0,3.0;7.0,6.0;7.0,4.0
,

,
1.0,0;2.0,1.0;1,9.0

,
2.0,1.0;6.0,2.0;9.0,8.0

,
3.0,2.0;4.0,1.0;8.0,7.0

,

,
6.0,5.0;8.0,6.0;5.0,4.0

,
9.0,6.0;7.0,6.0;4.0,1.0

,
8.0,6.0;8.0,7.0;4.0,2.0

,

3

2

1































rqp
zG

wvu
yG

cba
xG

Let  NVNV G 1,,0 1
 
,  NVNV G 1,,0 2 and  NVNV G 1,,0 3

 
be NVTs on ZYX and,  

respectively. Let the mapping     ,,: YXf 
 
defined by       wcfvbfuaf  and, , 

    ,,: ZYg 
 
defined by       rwgqvgpug  and, . Then the mapping gf and  are 

NVGP continuous mapping but the mapping     ,,: ZXfg 
 
is not NVGP continuous mapping. 

Definition 4.32: Let  ,X  be a NVTS. The neutrosophic vague generalized pre closure                      (

 AclNVgp  in short)  and neutrosophic vague generalized pre interior (  ANV intgp  in short) for any NVS 

A  is defined as follows, 

   KAXNKKAclNV  andinVGPCSais/gp . 

   AGXNGGANV  andinVGPOSais/intgp .  

If A  is NVGPCS, then   AAclNV gp . 

Theorem 4.33: Let     ,,: YXf   be NVGP continuous mapping. Then the following conditions hold. 

i)      AfNVclAclNVf gp , for every NVS A  in X . 

ii)      BNVclfBfclNV 11gp   , for every NVS B  in Y . 

Proof: (i) Since   AfNVcl  is NVCS in Y  and f  is NVGP continuous mapping, then 

   AfNVclf 1
 is NVGPCS in X . That is      AfNVclfAclNV 1gp  . Therefore 

     AfNVclAclNVf gp , for every NVS A  in X . 

(ii) Replacing A  by  Bf 1
 in (i), we get          BNVclBffNVclBfclNVf   11gp . Hence 

     BNVclfBfclNV 11gp   , for every NVS B  in Y . 

5. Neutrosophic Vague generalized pre irresolute mapping: 

Definition 5.1: A map     ,,: YXf   is said to be neutrosophic vague generalized pre irresolute 

(NVGP irresolute in short) mapping if  Af 1
 is a NVGPCS in  ,X

 
for every NVGPCS A in  ,Y . 
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Theorem 5.2: Let     ,,: YXf   be a NVGP irresolute mapping, then f  is NVGP continuous 

mapping but not conversely. 

Proof: Let f  be NVGP irresolute mapping. Let A  be any NVCS in Y . Since every NVCS is NVGPCS, A  is 

NVGPCS in Y . Since f  is NVGP irresolute mapping, by definition  Af 1

 
is NVGPCS in X . Hence f  is 

NVGP continuous mapping. 

Example 5.3: Let  ,,, cbaX   wvuY ,,  and 

                 

                 
.

9.0,4.0;7.0,5.0;6.0,1.0
,

8.0,4.0;9.0,8.0;6.0,2.0
,

6.0,5.0;8.0,7.0;5.0,4.0
,

,
4.0,2.0;4.0,1.0;8.0,6.0

,
5.0,2.0;2.0,1.0;8.0,5.0

,
4.0,3.0;3.0,2.0;7.0,6.0

,

2

1





















wvu
yG

cba
xG

Then  NVNV G 1,,0 1
 
and  NVNV G 1,,0 2

 
are NVTs on X and Y respectively. Define a mapping 

    ,,: YXf 
 
by       .and, wcfvbfuaf   Then f is NVGP continuous mapping. Let 

                 
.

4.0,2.0;3.0,2.0;8.0,6.0
,

2.0,1.0;2.0,1.0;9.0,8.0
,

3.0,1.0;2.0,1.0;9.0,7.0
,














wvu

yB
 

is NVGPCS in Y . But  Bf 1
 is not NVGPCS in X . Therefore f

 
is not NVGP irresolute mapping. 

Theorem 5.4: A mapping     ,,: YXf   is NVGP irresolute mapping if and only if the inverse image 

of each NVGPOS in Y is NVGPOS in X . 

Proof: Necessity: Let A  be NVGPOS in Y . This implies 
cA  is NVGPCS in Y . Since f  is NVGP irresolute 

mapping,  cAf 1
 is NVGPCS in X . Since     cc AfAf 11   ,  Af 1

 is NVGPOS in X . 

Sufficiency: The proof is obvious from the Definition 5.1. 

Theorem 5.5: Let     ,,: YXf   be NVGP irresolute mapping, then f  is neutrosophic vague 

irresolute mapping if X  is NV 1/2pT  space.  

Proof: Let A be NVCS in Y . Then A  is NVGPCS in Y . Since f
 
is NVGP irresolute mapping,  Af 1

 is 

NVGPCS in X , by hypothesis. Since X  is NV 1/2pT  space,  Af 1
 is NVCS in X . Hence f  is 

neutrosophic vague irresolute mapping. 

Theorem 5.6: Let     ,,: YXf   be NVGP irresolute mapping, then f  is NVP irresolute mapping if 

X  is NV 1/2gpT  space.  

Proof: Let A  be NVPCS inY . Then A  is NVGPCS inY . Since f
 
is NVGP irresolute mapping,   Af 1

 is 

NVGPCS in X , by hypothesis. Since X is NV 1/2gpT  space,  Af 1
 is NVPCS in X . Hence f  is NVP 

irresolute mapping. 
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Theorem 5.7: Let     ,,: YXf 
 
and     ,,: ZYg 

 
be NVGP irresolute mapping, where 

ZYX and,  are NVTS, then fg   is NVGP irresolute mapping. 

Proof: Let A  be NVGPCS in Z . Since g  is NVGP irresolute mapping,  Ag 1
 is NVGPCS in Y . Since f  

is NVGP irresolute mapping,   Agf 11 
 is NVGPCS in X . Hence    Afg

1
  is NVGPCS in X . 

Therefore fg   is NVGP irresolute mapping. 

Theorem 5.8: Let     ,,: YXf 
 
 be NVGP irresolute mapping and     ,,: ZYg 

 
is NVGP 

continuous mapping, where ZYX and,  are NVTS, then fg   is NVGP continuous mapping. 

Proof: Let A  be NVCS in Z . Since g  is NVGP continuous mapping,  Ag 1
 is NVGPCS in Y . Since f  is 

NVGP irresolute mapping,   Agf 11 
 is NVGPCS in X . Hence    Afg

1
  is NVGPCS in X . 

Therefore fg   is NVGP continuous mapping. 

Theorem 5.9: Let     ,,: YXf   be a mapping from a NVTS X into a NVTS Y . Then the following 

conditions are equivalent if  X  and Y are NV 1/2gpT  space. 

i) f  is NVGP irresolute mapping. 

ii)  Bf 1
 is NVGPOS in X  for each NVGPOS B  in Y . 

iii)      BfNVBNVf 11 intpintp    for each NVS B  of Y . 

iv)      BclNVfBfclNV pp 11    for each NVS B  of Y . 

Proof: (i)  (ii): It is obviously true. 

(ii)  (iii): Let B  be NVS in Y and   BBNV intp  . Also     BfBNVf 11 intp   . Since 

 BNV intp  is NVPOS in Y , it is NVGPOS in Y . Therefore   BNVf intp1
 is NVGPOS in X , by 

hypothesis. Since X  is NV 1/2gpT  space   BNVf intp1
 is NVPOS in X . Hence 

         BfNVBNVfNVBNVf 111 intpintpintpintp   . 

(iii)  (iv): It is obvious by taking complement in (iii). 

(iv)  (i): Let B  be NVGPCS in Y . Since Y  is  NV 1/2gpT  space, B  is NVPCS in Y  and   BBclNV p . 

Hence        BfclNVBclNVfBf 111 pp   . Therefore     BfBfclNV 11p   . This implies 

 Bf 1
 is NVPCS and hence it is NVGPCS in X . Thus f  is NVGP irresolute mapping. 

Theorem 5.10: A mapping     ,,: YXf   is NVGP irresolute mapping from NVTS X into  NVTS Y , 

then      BfNVclNVBf 11 intp    if X  is 
pgpTNV space. 
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Proof: Let B be NVGPOS in Y . Then by hypothesis  Bf 1
 is a NVGPOS in X . Since X is 

pgpTNV

space,  Bf 1
 is a NVPOS in X . Therefore     BfBfNV 11intp    and 

     BfNVclNVBf 11 int   . Hence      BfNVclNVBf 11 intp   . 
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