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1. Introduction:

The concept of fuzzy sets and intuitionistic fuzzy sets was introduced by Zadeh [24] in 1965 and
Atanassov [4] in 1986. In 1970, Levine [11] initiated the study of generalized closed sets. The theory of fuzzy
topology was introduced by C.L.Chang [6] in 1967. The theory of vague sets was first proposed by Gau and
Buehrer [9] as an extension of fuzzy set theory. Then, Smarandache[23] introduces the neutrosophic
components T, I, F which represent the membership, indeterminacy, and hon-membership values respectively,
where ]-0,1+[ is the non-standard unit interval in 1995 (published in 1998). Shawkat Alkhazaleh[22] in 2015
introduced the concept of neutrosophic vague set as a combination of neutrosophic set and vague set. In this
paper we introduce the concept of neutrosophic vague generalized pre-continuous mapping and neutrosophic
vague generalized pre-irresolute mappings and also compare with the other existing functions with counter
examples. Also its properties are discussed.

2. Preliminaries
Definition 2.1:[22] A neutrosophic vague set Ay, (NVS in short) on the universe of discourse X written as
ANV = {<X;'|:ANV (X); fANv (X); IfANV (X)> Xe X } whose truth membership, indeterminacy membership and

false membership functions is defined as:

T 0=, =[] A =[P ]
where,
1) T'=1-F
2) F"=1-T and
3) O0<T +I1 +F <2".
Definition 2.2:[22] Let A, and By, be two NVSs of the universe U . If VU, eU, fAN\/ (ui)SfBNV (u.);

I
IAANV (u;)> IABNV (u); IfANV (u;)> IfBNV (u;), then the NV'S A, is included by By, , denoted by
A, =By, where 1<i<n.

Definition 2.3:[22] The complement of NVS Ay, is denoted by A,f,v and is defined by
-I’-\:NV (X)= |:1_T+’1_T7]’ IAg‘Nv (X): [1_ I +’1_ I 7]’ 'ftsmv (X): [1_ F+11_ Fi]
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Definition 2.4:[22] Let Ay, be NVS of the universe U where VU; eU ’-I:ANV (x)=[1,1] IAANV (x)=[0,0];

IfANV (x)= [0,0]. Then A, is called a unit NVS(L,, in short), where 1< i <n.

Definition 2.5:[22] Let Ay, be NVS of the universe U where VU; eU ’fANv (X)= [0, 0]; IAANV (X)= [1, 1];

IfANV (x)=[1,1]. Then A, is called a zero NVS(0,, inshort), where 1<i<n.

Definition 2.6:[22] The union of two NVSs A, and By, isNVS C, , writtenasCy, = Ay, U By .
whose truth-membership, indeterminacy-membership and false-membership functions are related to those of
A,y and By, givenby,

To, (0=[max(r; 7o, Jmax(rs 7o, )
Io,, ()=min(1;, 15, Jmin(i; 15, )
Fo,, (x)=[min(F,,, .y, Jmin(F, R )|

Definition 2.7:[22] The intersection of two NVSs A, and By, is NVS C,,, , written as
Cw = Aw M By , whose truth-membership, indeterminacy-membership and false-membership functions

are related to those of Ay, and By, given by,
fCN\/ (X): [mln(T'A_Nv ’TB_NV )'mln(TA-'—Nv 'TBt\lv )J

A

Io,, ()=|max(1, .15, Jmax(i;, 15 )
F, (0=|max(F,,, s Jmax(F;, Fo )

Definition 2.8:[22] Let Ay, and B,, be two NVSs of the universe U . If YU, eU,
To, W)=Ts (W) T, (u)=Tg (u); Fo (u)=Fg (u) thenthe NVS Ay, and By, are called
equal, where 1<i1<n.

Definition 2.9: Let (X , r) be a topological space. A subset A of X is called:
i) semi closed set (SCS in short)[12] if int(cl (A)) c A
ii) pre- closed set (PCS in short)[17] if Cl (int(A)) c A
iii) semi-pre closed set (SPCS in short)[1] if int(cl (i nt(A))) c A,
iv) o -closed set (@ CS in short)[20] if cl(int(cl(A)))< A,
%) regular closed set (RCS in short)[24] if A=cl (i nt(A)).

Definition 2.10: Let (X,T) be a topological space. A subset A of X is called:
i) generalized closed (briefly, g-closed) [11] if Cl (A) c U , whenever A cU and U is openin X .
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ii) generalized semi closed (briefly, gs-closed)[3] if SCl (A)g U whenever A cU and U is openin X .

iii) a-generalized closed (briefly, ag-closed) [13] if « Cl (A) < U whenever A cU and U is openiin X .

iv) generalized pre-closed (briefly, gp-closed) [14] if pcl (A)g U whenever A cU and U is openin X .

v) generalized semi-pre closed (briefly, gsp-closed) [8] if Spcl (A)g U whenever A cU and U is open in X

Definition 2.11: Let (X,z‘) and (Y,O') be any two topological spaces. A map f :(X,r)—)(Y,O') is said
to be
e semi-continuous [12] if f ’1(V) is semi-closed set in (X , r) for every closed set V of (Y,O').

e pre-continuous [17] if f _1(V) is pre-closed set in (X , z') for every closed set V of (Y,a).

e semi pre-continuous [19] if f ’l(V) is semi pre-closed set in (X , z') for every closed set V of (Y,O').

e« -continuous [16] if f _1(V) is o -closed set in (X , T) for every closed set V of (Y,J).

e generalized continuous [5] if f _1(V) is generalized closed set in (X , z') for every closed set V of (Y , 0).

e generalized semi-continuous [7] if f ’1(V) is generalized semi-closed set in (X , r) for every closed set V
of (Y,O').

e generalized pre-continuous [21] if f’l(V) is generalized pre-closed set in (X , r) for every closed set V
of (Y,O').

e generalized semi pre-continuous [18] if f"l(V) is generalized semi pre-closed set in (X,z‘) for every
closed set V of (Y,O').

e« -generalized continuous [10] if f _1(V) is o -generalized closed set in (X , T) for every closed set V of
(Y,O').

e generalized pre-irresolute [2] if f’l(V) is generalized pre-closed set in (X , r) for every generalized pre-
closed set V of (Y,J).

Definition 2.12:[15] A neutrosophic vague topology (NVT in short) on X is a family 7 of neutrosophic vague
sets (NVS in short) in X satisfying the following axioms:

e Oy . Lyer

e G NG,er forany G,G, er

e« UG er,V{G iellcr

In this case the pair (X , z') is called a neutrosophic vague topological space (NVTS in short) and any NVS in
7 is known as a neutrosophic vague open set (NVOS in short) in X .

The complement A° of a NVOS ina NVTS (X ) T) is called neutrosophic vague closed set (NVCS in short) in
X.

Definition 2.13:[15] A NVTS (X,T) is said to be neutrosophic vague T, space (NV T, , in short) if
every NVGPCSin X isaNVCSin X .
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Definition 2.14:[15] A NVTS (X ) z‘) is said to be neutrosophic vague ngp space (NV ngp in short) if every
NVGPCSin X isaNVPCSin X .

3. Neutrosophic Vague Continuous mapping:

Definition 3.1: Let (X , T) and (Y,G) be any two neutrosophic vague topological spaces. A map
f :(X,r)—)(Y,G) is said to be,

e Neutrosophic vague continuous (NV continuous) if f _l(V) is neutrosophic vague closed set in (X . z') for
every neutrosophic vague closed set V of (Y , 0').

« neutrosophic vague semi-continuous (NVS continuous) if f ’1(V) is neutrosophic vague semi-closed set in
(X \ z') for every neutrosophic vague closed set V of (Y , 6).

e neutrosophic vague pre-continuous (NVP continuous) if f’l(V) is neutrosophic vague pre-closed set in
(X \ z') for every neutrosophic vague closed set V of (Y , 0').

e neutrosophic vague semi pre-continuous (NVP continuous) if f’l(V) is neutrosophic vague semi pre-
closed set in (X , z-) for every neutrosophic vague closed set V of (Y,O').

e neutrosophic vague « -continuous (NV « -continuous) if f _1(V) is neutrosophic vague « -closed set in
(X , r) for every neutrosophic vague closed set V of (Y,O').

¢ neutrosophic vague regular continuous (NVR continuous) if f_l(V) is neutrosophic vague regular closed
set in (X , r) for every neutrosophic vague closed set V of (Y , 0).

« neutrosophic vague generalized continuous (NVG continuous) if f ’l(V) is neutrosophic vague generalized
closed set in (X , z') for every neutrosophic vague closed set V of (Y , J).

e neutrosophic vague generalized semi-continuous (NVGS continuous) if f’l(V) is neutrosophic vague
generalized semi-closed set in (X , z') for every neutrosophic vague closed set V of (Y , (7).

e neutrosophic vague generalized semi pre-continuous (NVGSP continuous) if f _1(V) is neutrosophic vague
generalized semi-closed set in (X , z-) for every neutrosophic vague closed set V of (Y , 0').

e neutrosophic vague « -generalized continuous (NV & G continuous) if f _1(V) is neutrosophic vague « -

generalized closed set in (X , z') for every neutrosophic vague closed set V of (Y , 0').
4. Neutrosophic Vague Generalized Pre-Continuous Mappings:

Definition 4.1: Amap f : (X , r) —> (Y , 0') is said to be neutrosophic vague generalized pre-continuous
(NVGP continuous in short) mapping if f _l(A) is NVGPCS in (X , r) for every neutrosohpic vague closed
set AOf(Y,O').
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Example 4.2: Let X = {a,b}, Y = {u,v} and

G, = & b
| = {X’ ([0.5,0.7];[0.2,0.4];[0.3,0.5)) ' ([0.6,0.9];[0.3,0.4]; [0-1’0-4]>},

a b
©2 = {X’ ([0.2,0.5];]0.5,0.6];[0.5,0.8]) " ([0.3,0.4];[0.5,0.7]; [0.6,0.7]>} ’

Ga = {y’ ([0.1,0.3]; [0.6?0.8]; [0.7,0.9]) " ([0.2,0.3]; [0.8\,/0.9];[0.7,0.8]>}'

Then 7 = {0y, ,G,,G,,1,, } and ¢ ={0,,,G;, 1, } are NVTson X and Y respectively. Define a
mapping f :(X , z') — (Y,O') by f(a =u and f(b) =V. Then f isa NVGP continuous mapping.

Theorem 4.3: Let (X , r) and (Y , 0') be any two vague topological spaces. For any vague continuous function
f: (X , z') - (Y, (7) we have the following results.

i) Every NV continuous mapping is a NVG continuous mapping.

i) Every NV continuous mapping isa NV« continuous mapping.
iii) Every NV continuous mapping is a NVP continuous mapping.

iv) Every NV « continuous mapping is a NVP continuous mapping.
V) Every NVR continuous mapping is a NV continuous mapping.

Vi) Every NV« continuous mapping is a NVS continuous mapping.
vii) Every NVP continuous mapping is a NVSP continuous mapping.
viii) Every NV continuous mapping is a NVGP continuous mapping.
ix) Every NVG continuous mapping is a NVGP continuous mapping.
X) Every NVP continuous mapping is a NVGP continuous mapping.
Xi) Every NV a continuous mapping is a NVGP continuous mapping.

Xxii) Every NVR continuous mapping is a NVGP continuous mapping.
Xiii) Every NV aG continuous mapping is a NVGP continuous mapping.
Xiv) Every NVGP continuous mapping is a NVSP continuous mapping.
XV) Every NVGP continuous mapping is a NVGSP continuous mapping.
Proof: (i) Let f :(X,r)—) (Y, 0') be NV continuous mapping. Let A be NVCSin Y . Then ffl(A) is
NVCSin X . Since every NVCS is NVGCS, f _1(A) isNVGCSin X . Hence f is NVG continuous
mapping.
(i) Let f :(X , r)—) (Y,O') be NV continuous mapping. Let A be NVCSin Y . Then f‘l(A) is
NVCS in X . Since every NVCS is NV & CS, f 71(A) isNVa CSin X . Hence fisNVa continuous
mapping.
(iii) Let f :(X,r)—) (Y,J) be NV continuous mapping. Let Abe NVCSin Y . Then f‘l(A) is
NVPCS in X . Since every NVCS is NVPCS, f 71(A) isNVPCS in X . Hence f is NVP continuous
mapping.

The proof of (iv) to (xv) are similar.
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Remark 4.4: The converse of the above Theorem 4.3 need not be true as shown by the following examples.

Example 4.5: Let X = {a,b,c}, Y = {u,V,W} and

a b c
G = {X’ ([0.5,0.6];[0.3,0.5];[0.4,0.5]) " ([0.6,0.9];[0.2,0.5];[0.1,0.4]) ' ([0.5,0.7]; [o.4,o.5];[o.3,o.5]>}’

a b c
G2 = {X’ ([0.8,0.9];[0.1,0.3];[0.1,0.2]) " ([0.7,0.9];[0.1,0.2];[0.1,0.3]) ' ([0.6,0.8];[0.2,0.5]; [0.2,0.4])} '

u \ w
G = i) i) H .
’ {y ([0.8,0.9];[0.2,0.4];[0.1,0.2]) " ([0.7,0.9];[0.1,0.5];[0.1,0.3]) <[O.6,0.8];[0.2,0.3];[0.2,0.4])}
Then 7 = {0 w o G Gz,lNV} and o = {0 NV Gs,lNV} are NVTson X and Y respectively. Define a

mapping f : (X , z-) — (Y,O') by f (a): u, f (b): v and f(C): W. Then f is NVG continuous mapping
but not NV continuous mapping, since

G; = {y’ <[0.1,0.2];[0.6?0.8];[0.8,0.9]> "([0.1,0.3]; [0.5\,/0.9]; [0.7,0.9)) " ([0.2,0.4]; [o.7v,vo.8]; [0.6,0.8])}
isNVCsin Y, but fHGS) isnotNVCSin X .

Example 4.6: Let X = {a,b}, Y = {u,v} and

G, = a b
b {X’ ([0.1,0.3];0.5,0.7];[0.7,0.9]) " ([0.2,0.5];[0.3,0.5]; [0.5,0.8])}'

a b
©2 = {X’ ([0.2,0.6];[0.1,0.4];[0.4,0.8]) " ([0.3,0.5];[0.2,0.5]; [o.5,o.7]>} '

Ga = {y’ ([0.6,0.8]; [o.2l,J0.5]; [0.2,0.4]) <[o.7,o.9];[o.1\,/0.4]; [0.1,0.3])}

Then 7 = {0y, ,G,,G,,1y, } and & ={0,,,G;, 1, } are NVTson X and Y respectively. Define a
mapping f :(X , z') - (Y,(T) by f(a) =u and f(b) =V. Then f isNVa continuous mapping but not

([0.2,0.4];[0.5,0.8];[0.6,0.8]) " ([0.1,0.3];[0.6,0.9];[0.7,0.9])
isNvesin Y, but f4(GS) isnotNvCsin X .

. . . ¢ u '
NV continuous mapping, since G; = {y, }
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Example 4.7: Let X = {a,b,c}, Y= {u,v, W} and

a b c
G, = {X, ([0.3,0.7];[0.5,0.6];[0.3,0.7]) ' ([0.4,0.5];[0.6,0.8];[0.5,0.6]) ' ({0.3,0.5];[0.4,0.7]; [0.5,0.7]>},

u \ w
G = ) ) ) -
2 {y ([0.1,0.2];[0.6,0.9];[0.8,0.9]) ' ([0.2,0.4];[0.7,0.8];[0.6,0.8]) <[o.1,o.3];[o.7,o.9];[o.7,o.9]>}
Then 7 = {0 NV Gl,lNV} and o = {ONV : Gz,lNV} are NVTson X and Y respectively. Define a mapping

f: (X , z') — (Y, 0') by f (a) =u,f (b): v and f (C) =W. Then f is NVP continuous mapping but not
NV continuous mapping and NV & continuous mapping, since

G. = {y' <[0.8,0.9];[0.11,10.4];[0.1,0.2]> '([0.6,0.8]; [0.2\,/0.3]; [0.2,0.4))"([0.7,0.9]; [o.;/,vo.s]; [o.1,o.3]>}
isNVCSin Y, but f_l(Gg) isnot NVCSand NV CSin X .

Example 4.8: Let X = {a,b,c}, Y = {u,V,W} and

a b ¢
G, = {x, ([0.7,0.8];[0.1,0.3];[0.2,0.3]) ' ([0.6,0.9];[0.2,0.4];[0.1,0.4])) ' ([0.5,0.6];[0.3,0.4]; [o.4,0.5]>}’

u v w
{ '([0.7,0.8];[0.1,0.3];[0.2,0.3]) " ([0.6,0.9];[0.2,0.4];[0.1,0.4]) ' ([0.5,0.6];[0.3,0.4]; [o.4,o.5]>} '
Then 7 = {0y, ,G,, 1y } and & = {0, ,G,, 1,y } are NVTson X and Y respectively. Define a mapping

f:(X,7)=>(Y,o)by f(a)=uand f(b)=Vv. Then f is NV continuous mapping but not NVR
continuous mapping, since

G. = {y’ {[0.2,0.3]; [0.7?0.9]; [0.7,0.8]) " ([0.1,0.4]; [0.6\,/0.8]; [0.6,0.9))"([0.4,0.5]; [0.6\/,\6.7]; [0.5,0.6])}
isSNVCSin Y , but f_l(Gg) is not NVRCS in X .

Example 4.9: Let X = {a,b,c}, Y = {u,V,W} and

a b ¢
G = {X’ ([0.2,0.4];[0.8,0.9];[0.6,0.8)) ' ([0.1,0.2];[0.7,0.9];[0.8,0.9])) ' ([0.2,0.3];[0.5,0.9]; [0-7’0-8]>}’

u Vv w
{ '([0.5,0.6];[0.1,0.2];[0.4,0.5]) " ([0.7,0.8];[0.2,0.4];[0.2,0.3]) " ([0.5,0.7];[0.1,0.6]; [o.3,o.5]>} '
Then 7 = {0y, ,G,, 1y} and & = {0y, ,G,,1,, } are NVTson X and Y respectively. Define a mapping

f: (X , r) (Y, 0') by f(a) =uand f (b) =V. Then f is NVS continuous mapping but not NV ¢
continuous mapping, since

G; = {Y’ ([0.4,05]; [0.8l,J0.9]; [0.5,0.6]) ' ([0.2,0.3]; [0.6\,/0.8]; [0.7,0.8)) ' ([0.3,0.5]; [o.4%.9];[o.5,o.7]>}
isNVCSin Y, but f4(GE) isnotNVa CSin X .
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Example 4.10: Let X = {a,b,c}, Y = {u,v, W} and

a b C
&= {X’ ({[0.8,0.9];[0.1,0.3];[0.1,0.2]) *([0.7,0.9];[0.2,0.4];[0.1,0.3]) " ([0.8,1];[0.1,0.4]; 0,0. 2])}

G, =

a b c
{X’ ([0.2,0.4];]0.7,0.9];[0.6,0.8]) " ([0.1,0.5];[0.6,0.8];[0.5,0.9]) ' ([0.4,0.5];[0.7,0.8]; [0.5,0.6]>} ’

T {y’ ([0.5,0.7]; [o.3l,Jo.4]; [0.3,0.5)) " ([0.4,0. 8] 0. 3Vo 5];[0.2,0.6])"([0.3,0.5]; [0.5\?;).6]; [0.5,0.7]>}
Then 7 = {ONV,Gl,GZ,lNV} and o

mapping f :(X,r)—)(Y,O') by f( )
but not NVP continuous mapping, since

{ ,G;, } are NVTson X and Y respectively. Define a
= ( ) v and f( ) W. Then f is NVSP continuous mapping

G; = {y’ <[o.3,o.5];[o.61,Jo.7]; [0.5,0.7]) " ([0.2,0.6]; [0.5\,/0.7]; [0.4,0.8])" ([0.5,0.7]; [o.:,vo.5]; [0.3,0.5]>}
isNVCsin Y, but fH{GE) is not NVPCSin X .

Example 4.11: Let X = {a,b,c}, Y = {U,V,W} and

a b ¢
G{ <[0.5,o.6];[0.1,0.3]:[0-4’0-5]>’<[0-7,0-9]i[0-1,0-2]i[0-1,0-3]>’<[0-7’0-8]?[0'1’0'4];[0'2’0'3]>}’

a b c
G = {X’ ([0.3,0.5];[0.4,0.6];[0.5,0.7]) " {[0.4,0.8];[0.1,0.3];[0.2,0.6]) ' ([0.5,0.6];[0.4,0.5]; [o.4,o.5]>} ’

u Vv w
G = 1 ) 1 .
’ {y ([0.8,0.9];[0.2,0.4];[0.1,0.2]) " ([0.7,0.9];[0.1,0.4];[0.1,0.3]) " ([0.6,0.8];[0.2,0.6]; [o.2,o.4]>}
Then 7 = {0y, ,G,,G,,1,, } and & ={0,,,G;, 1, } are NVTson X and Y respectively. Define a

mapping f : (X , z') — (Y,(T) by f (a)= u, f (b)= v and f(C)= W. Then f is NVGP continuous
mapping but not NV continuous mapping and NVG continuous mapping, since

Gs = {y’ {0.1,0.2]; [0.6?0.8]; [0.8,0.9]) " ([0.1,0.3]; [0.6\,/0.9]; [0.7,0.9)) " ([0.2,0.4]; [o.4v,vo.8]; [o.s,o.s])}
isNVCSin 'Y, but f‘l(Gg) is not NVCS and NVGCS in X .

Example 4.12: Let X = {a,b,c}, Y = {u,V,W} and

a b c
G = {X’ {[0.7,0.9];[0.2,0.5];[0.1,0.3]) " ([0.8,0.9];[0.3,0.4];[0.1,0.2))’ <[O.6,0.8];[0.2,0.4];[0.2,0.4]>}’

u v w
2 {y’ ([0.1,0.2];[0.6,0.8];[0.8,0.9]) " ([0.1,0.2];[0.7,0.9];[0.8,0.9]) ' ([0.2,0.3]; [0.7,0.9];[0.7,0.8])} '
Then 7 = {0y, ,G,, 1y } and & = {0y, ,G,, 1y, } are NVTson X and Y respectively. Define a mapping

235 International Journal of Engineering, Science and Mathematics
http://www.ijesm.co.in, Email: ijesmj@gmail.com



http://www.ijesm.co.in/
http://www.ijesm.co.in/

International Journal of Engineering, Science and Mathematics
Vol. 7Issue 2, February 2018,
ISSN: 2320-0294 Impact Factor: 6.765

Journal Homepage: http://www.ijesm.co.in, Email: ijesmj@gmail.com Double-
Blind Peer Reviewed Refereed Open Access International Journal - Included in the International Serial Directories Indexed & Listed at:
Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell’s Directories of Publishing Opportunities, U.S.A

f: (X , z') — (Y, 0') by f (a): u, f (b): v and f (C): W. Then f is NVGP continuous mapping but not
NVP continuous mapping, since

G: = {y’ ({[0.8,0.9]; [o.2?o.4];[o.1,o.2]> '([0.8,0.9]; [0.1\,/0.3]; [0.2.0.2))"([0.7,0.8]; [o.r,vo.s];[o.l,o.zb}
isNVCSin Y, but f4(G¢) isnot NVPCS in X .

Example 4.13: Let X = {a,b,c}, Y = {u,V,W} and

a b c
s {X’ ([0.2,0.3];[0.6,0.7];[0.7,0.8]) " ([0.4,0.5];[0.6,0.8];[0.5,0.6]) ' ([0.3,0.5];[0.5,0.6]; [o.5,o.7]>}’

a b c
G, = {X’ ([0.1,0.3];[0.6,0.9];[0.7,0.9]) ' ([0.2,0.4];[0.7,0.8];[0.6,0.8]) ' ([0.3,0.4];[0.5,0.6]; [0,6,0_7]>} !

u v w
G = 1 1 ’ .
: {y ([0.8,0.9];[0.1,0.3];[0.1,0.2]) " ([0.8,1];[0.2,0.3];[0,0.2]) <[o.7,o.9];[o.s,o.4];[o.1,o.3]>}
Then 7 = {0y, ,G,,G,,1y, } and ¢ ={0,,,G;,1,, } are NVTson X and Y respectively. Define a

mapping f : (X , z') — (Y,a) by f (a)= u, f (b)z v and f(C)= W. Then f is NVGP continuous
mapping but not NV & continuous mapping, NVR continuous mapping and NV ¢ G continuous mapping since

c _ u \' W
G: = {y’ ([0.1,0.2];[0.7,0.9];[0.8,0.9]) " ([0,0.2];[0.7,0.8];[0.8,1]) ' {[0.1,0.3];[0.6,0.7]; [0.7,0.9])}
isNVCSin Y, but f’l(Gsc) isnot NV & CS, NVRCS and NV ¢ GCSin X .

Example 4.14: Let X = {a,b,c}, Y = {u,v,W} and

a b c
G = {X’ ([0.1,0.3];[0.6,0.7];[0.7,0.9]) " ([0.2,0.4];[0.8,0.9];[0.6,0.8]) " ([0.1,0.2];[0.7,0.8]; [0.8,0.9])}’

u Vv W
G = i) 1 1 .
2 {y ([0.7,0.9];[0.3,0.4];[0.1,0.3]) " ([0.6,0.8];[0.1,0.2];[0.2,0.4]) <[0.8,0.9];[0.2,0.3];[0.1,0.2])}
Then 7 = {O NV Gl,lNV} and o = {ONV : Gz,lNV} are NVTson X and Y respectively. Define a mapping

f: (X , r) - (Y, 0') by f (a) =u,f (b): vand f (C) =W. Then f is NVSP continuous mapping and
NVGSP continuous mapping but not NVGP continuous mapping, since

G: = {y’ {0.1,0.3]; [0.61,10.7]; [0.7,0.9])) " ([0.2,0.4]; [0.8\,/0.9]; [0.6,0.8]) " ([0.1,0.2]; [0.7V,v0.8]; [0.8,0.9]>}
isNVCSin Y, but f4(G¢) isnot NVGPCS in X .

Proposition 4.15: NVS continuous mapping and NVGP continuous mapping are independent to each other.
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Example 4.16: Let X = {a,b,c}, Y = {u,v,w} and

a b c
G = {X’ ([0.3,0.6];[0.8,0.9];[0.4,0.7]) " ([0.1,0.3];[0.7,0.8];[0.7,0.9]) ' ([0.2,0.4];[0.6,0.7]; [0.6,0.8])}’

u Vv w
G = 1 ) ) .
2 {y ([0.4,0.7];[0.1,0.2];[0.3,0.6]) ' ([0.7,0.9];[0.2,0.3];[0.1,0.3]) <[0.6,0.8];[0.3,0.4];[0.2,0.4]>}
Then 7 = {0 NV 5 Gl,lNV} and o = {ONV : Gz,lNV} are NVTson X and Y respectively. Define a mapping

f: (X , z') — (Y, 0') by f (a) =u,f (b): v and f (C) =W. Then f is NVS continuous mapping but not
NVGP continuous mapping, since

G: = {y’ {[0.3,0.6]; [0.8l,10.9]; [0.4,0.7)) " ([0.1,0.3]; [0.7\,/0.8]; [0.7,0.9) " ([0.2,0.4]; [0.6V,v0.7]; [0.6,0.8])}
isNvCsin Y, but NVpel (f (GS))z G, in X .

Example 4.17: Let X = {a, b}, Y = {u,v} and

G, = a b
b {X’ ([0.6,0.7];[0.2,0.3];[0.3,0.4]) " ([0.5,0.6];[0.1,0.2]; [o.4,o.5]>}’

a b
G2 = {X’ ([0.4,0.5];[0.8,0.9];[0.5,0.6]) ' ([0.3,0.6];[0.7,0.9]; [o.4,o.7]>} ’

©s = {y’ ([o.7,0.8]; [0.1?0.2]; [0.2,0.3)) " ([0.1,0.2]; [0.6\,/0.7]; [0.8,0.9]>}

Then 7 = {0y, ,G,,G,,1,, } and & ={0,,,G;, 1, } are NVTson X and Y respectively. Define a

mapping f : (X , z') - (Y : 0) by f (a) =uand f (b) =V. Then f is NVGP continuous mapping but not
NVS continuous mapping, since

Gs :{y’ <[O.2,0.3];[0.8?0.9];[0.7,0.8]> ’ <[O.8,0.9];[0.3\,/0.4];[0.1,0.2]>} snvesin Y but £7(G)
isnot NVSCSin X .

Proposition 4.18: NVGS continuous mapping and NVGP continuous mapping are independent to each other.

Example 4.19: Let X ={a,b,c}, Y = {u,v,w} and

a b c
G = {X’ ([0.2,0.4];[0.6,0.9];[0.6,0.8]) ' ([0.1,0.2];[0.7,0.8];[0.8,0.9]) ' ([0.2,0.3];[0.5,0.7]; [O.7,0.8]>}’

u Vv w
G = k) H i) .
2 {y ([0.6,0.8];[0.1,0.4];[0.2,0.4]) " ([0.8,0.9];[0.2,0.3];[0.1,0.2]) <[0.7,0.8];[0.3,0.5];[0.2,0.3])}
Then 7 = {0 NV 5 Gl,lNV} and o = {ONV , Gz,lNV} are NVTson X and Y respectively. Define a mapping
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f: (X , z') — (Y, 0') by f (a) =u,f (b): v and f (C) =W. Then f is NVGS continuous mapping but not
NVGP continuous mapping, since

G: = {y’ ([0.2,0.4]; [0.6l,J0.9]; [0.6,0.8])" <[0.1,0.2];[O.7\,/O.8]; [0.8,0.9]) " ([0.2,0.3]; [0.5%.7]; [0.7,0.8]>}
isNvCsin Y, but NVpel(f (GS))z G, in X .

Example 4.20: Let X = {a, b}, Y = {u,v} and

G, = a b
b {X’ ([0.4,0.7];[0.5,0.8];[0.3,0.6]) ' ([0.5,0.8];[0.6,0.7]; [o.2,o.5]>}’

a b
©2 = {X’ ([0.7,0.9];[0.2,0.5];[0.1,0.3])) " ([0.8,0.9]; [0.2,0.6];[0.1,0.2])} ’

©s = {y’ ([0.5,0.6]; [0.1?0.3]; [0.4,0.5)) <[0.8,0.9];[O.1\,/0.4]; [0.1,0.2]>}'

Then 7 = {0y, ,G,,G,,1,, } and & ={0,,,G;, 1, } are NVTson X and Y respectively. Define a
mapping f : (X , z') — (Y : O') by f (a) =uand f (b) =V. Then f is NVGP continuous mapping but not
NVGS continuous mapping, since

G = {y’ u | v
([0.4,0.5];[0.7,0.9];[0.5,0.6])) ' ([0.1,0.2]; [0.6,0.9];[0.8,0.9])

NVscl(f *(G2))z G, in X .

} isSNVCSin Y , but

Result 4.21: The relations between various types of neutrosophic vague continuity are given in the following
diagram.

NVR C NV C

A A A
\\ \\ N
v -t ¢ v o
@a GC nvepe = NVSPD
A A
AN AN
\ 4 Y

NVS C NVGSP C

In this diagram by “A  — B” we mean A implies B but not conversely and “A <« B” means A and B are
independent of each other. None of them is reversible “A <-~— B”.
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Theorem 4.22: A mapping f : (X , r) — (Y , 0') is NVGP continuous mapping if and only if the inverse
image of each NVOS in Y is NVGPOS in X .

Proof: Necessity: Let A be NVOSin Y . This implies A° isNVCSin Y .Since f is NVGP continuous
mapping, T *(A°) isNVGPCS in X . since f *(A°)=(f *(A)f, f*(A) isNVGPOSn X .

Sufficiency: The proof is obvious from the Definition 4.1.

Theorem 4.23: Let f : (X , T) — (Y,O') be mapping and let f _1(A) isNVRCS in X for every NVCS A
in Y . Then f is NVGP continuous mapping but not conversely.

Proof: Let A be NVCSin Y . Then f *(A) is NVRCSin X . Since every NVRCS is NVGPCS, f *(A) is
NVGPCSin X . Hence f is NVGP continuous mapping.

Theorem 4.24: Let f : (X , T) — (Y,O') is NVGP continuous mapping, then f is neutrosophic vague

continuous mapping if X is NV pT1/2 space.

Proof: Let A be NVCSinY . Then f’l(A) is NVGPCS in X, by hypothesis. Since X is NV T, space,

f ’I(A) is NVCSin X . Hence f is neutrosophic vague continuous mapping.

Theorem 4.25: Let f : (X , T) — (Y,O') is NVGP continuous mapping, then f is NVP continuous mapping
if X isNV T, space.

Proof: Let Abe NVCSinY . Then f’l(A) is NVGPCS in X, by hypothesis. Since X is NV, T,, space,
f’l(A) is NVPCS in X . Hence f is NVP continuous mapping.

Theorem 4.26: Let f : (X , 1') - (Y,O') be a mapping from NVTS X into NVTS Y . Then the following
conditions are equivalent if X is NV ng1/2 space.

i) f is NVGP continuous mapping.

i) f *(B) is NVGPCS in X forevery NVCS B in Y .

iii) NVcl (NV int(f _1(A)))g f (NVcl(A)) for every NVS A in Y .

Proof: (i) = (ii): It is obvious from the Definition 4.1.
(i) = (iii): Let A be NVSin Y . Then NVcl(A) is NVCSinY . By hypothesis, T (NVcl(A)) is
NVGPCSin X .Since X isNV T, space, f (NVcl(A)) is NVPCS. Therefore

NVel (NV int( f *(Nvel (A))) < £ (NVel (A)). Now
NVel (NV int(f 2(A))) < Nvel (NV int(f 2(Nvel(A))) < £ (Nvel (A)).
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(iii)=> (i): Let A be NVCSin Y . By hypothesis NVl (NV int(f *(A)))< f *(Nvel (A))= £ *(A).
This implies f _l(A) is NVPCS in X and hence it is NVGPCS. Thus f is NVGP continuous mapping.

Theorem 4.27: Let f : (X , r) — (Y,O') be mapping from NVTS X into a NVTS Y . Then the following

conditions are equivalent if X isa NV ngl/Z space.

i) f is NVGP continuous mapping.
i) f (A) is NVGPOS in X for every NVOS A in Y .
iii) fH(NV int(A)) < NV int(NVCI (f _1(A))) forevery NVSA in Y .

Proof: (i) = (ii): It is obvious.

(i) = (iii): Let A be NVSin Y . Then NV int(A) is NVOS inY . By hypothesis, f *(NV int(A)) is
NVGPOSin X .Since X isNV T,/ space, f (NV int(A)) is NVPOS in X . Therefore
£ 1NV int(B)) < NV int(Nvel (f *(NV int(B))))< NV int(Nvel (f (B))).

(i) = (i): Let A be NVCS in Y . Then its complement, say A° is NVOSin Y , then NV int(A“): A°. Now
by hypothesis f_l(NV int(A° ))g NV int(NVCI (f _1(A° ))) This implies

f ’1(A°)g NV int(NVCI (f ’l(Ac ))) Hence f ’1(A°) isa NVPOS in X . Since every NVPOS is
NVGPOS, fH(A%)isaNVGPOSin X . Thus f *(A) isaNVGPCSin X . Hence f is NVGP continuous
mapping.

Theorem 4.28: A mapping f : (X : T)—) (Y,O') is NVGP continuous mapping if

Nvel (NV int(Nvel (f (A))) < £ (NVel(A)) forevery NvS A in Y .

Proof: Let Abe NVOSin Y then A®isNVCSin Y . By hypothesis,

Nvel (NV int(Nvel (£ 2(A%)))) < £ (Nvel (A°))= £ (A°), since A® is NVCS. Now

(NV int(Nvel (N int(f 2(A)))f = Nvel (N int(Nvel (£ 2(A) < £ (%)= *(A)f. This
implies f*(A)c NV int(NVcl (NV int(f _1(A)))). Hence f(A) is NV & Os and hence it is NVGPOS.
Therefore f is NVGP continuous mapping, by theorem 4.22.

Theorem 4.29: Let f : (X , T) - (Y,O') be NVGP continuous mapping and g : (Y,O') - (Z,,u) be
neutrosophic vague continuous mapping, then g o f : (X , z') - (Z ) ,u) is NVGP continuous mapping.

Proof: Let A be NVCSin Z . Then g_l(A) is NVCSin Y , by hypothesis. Since f is NVGP continuous
mapping, f_l(g _1(A)) is NVGPCS in X . Hence g o f is NVGP continuous mapping.

Remark 4.30: The composition of two NVGP continuous mapping need not be NVGP continuous mapping and
it is shown by the following example.
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Example 4.31: Let X = {a,b, C},Y = {u,v, w}and Z= {p, g, r} neutrosophic vague sets G, G, and G,
defined as follows:

a b c
G = {X’ ([0.2,0.4];]0.7,0.8];[0.6,0.8])) " ([0.1,0.4];[0.6,0.7];[0.6,0.9]) ' ([0.4,0.5];[0.6,0.8]; [0.5,0.6])}’

G2 = {y’ ([o.7,0.8]; [o.1l,Jo.4]; [0.2,0.3])) " ([0.8,0.9]; [0.2\,/0.6]; [0.1,0.2]))"([0.9.1]; [0.1\,,\6.2]; [o,o.1]>} '

P q r
©s = {Z’ ([0.4,0.7];[0.6,0.7];[0.3,0.6]) " {[0.5,0.8];[0.4,0.7];[0.2,0.5]) ' ([0.3,0.4];[0.3,0.5]; [0.6,0.7])}
Let 7 ={0,,,Gy. 1y}, 0 =1{0,,G,, 1y tand = {0,,,G;, 1, } be NVTson X,Y and Z
respectively. Let the mapping f : (X , r) — (Y,O') defined by f(a) =u, f(b) =vand f(c) =W,
9:(Y,0)—(Z, 1) definedby g(u)=p,g(v)=q and g(w)=r. Then the mapping f and g are
NVGP continuous mapping but the mapping g o f : (X , z‘)—) (Z,,u) is not NVGP continuous mapping.

Definition 4.32: Let (X , z') be a NVTS. The neutrosophic vague generalized pre closure (

NVngI(A) in short) and neutrosophic vague generalized pre interior (NVgp int(A) in short) for any NVS
A is defined as follows,

NVgpcl(A)={K /KisaNVGPCSin X and Ac K}.
NVgpint(A)=U{G/Gisa NVGPOSin X and G c A}.
If A is NVGPCS, then NVgpcl(A)= A.
Theorem 4.33: Let f : (X , r) — (Y , 0') be NVGP continuous mapping. Then the following conditions hold.

) f (NVgpcl(A)) = NVcl (f(A)), for every NVS A in X .
i) NVngI(f ’l(B))g f (NVcl(B)), for every NVS B in Y

Proof: (i) Since NVCI(f (A)) isNVCSinY and f is NVGP continuous mapping, then
f(NVel (f(A))) is NvGPCsin X . Thatis NVgpel(A) < f (NVel (f(A))). Therefore
f (NVngl (A)) < Nvcl (f (A)) for every NVS A in X .

(ii) Replacing A by f_l(B) in (i), we get f(NVngI(f _l(B)))g NVCI(f (f _1(8)))g NVCI(B). Hence
NVngI(f ’l(B))g f (NVcl(B)), for every NVS B in Y .
5. Neutrosophic VVague generalized pre irresolute mapping:

Definition 5.1: Amap f : (X ) z') —> (Y,O') is said to be neutrosophic vague generalized pre irresolute
(NVGP irresolute in short) mapping if f _1(A) isa NVGPCS in (X ) z') for every NVGPCS Aiin (Y , 0).

241 International Journal of Engineering, Science and Mathematics
http://www.ijesm.co.in, Email: ijesmj@gmail.com



http://www.ijesm.co.in/
http://www.ijesm.co.in/

International Journal of Engineering, Science and Mathematics
Vol. 7Issue 2, February 2018,
ISSN: 2320-0294 Impact Factor: 6.765

Journal Homepage: http://www.ijesm.co.in, Email: ijesmj@gmail.com Double-
Blind Peer Reviewed Refereed Open Access International Journal - Included in the International Serial Directories Indexed & Listed at:
Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell’s Directories of Publishing Opportunities, U.S.A

Theorem 5.2: Let f : (X , r) — (Y,O') be a NVGP irresolute mapping, then f is NVGP continuous
mapping but not conversely.

Proof: Let f be NVGP irresolute mapping. Let A be any NVCSin Y . Since every NVCS is NVGPCS, A is
NVGPCSin Y . Since f is NVGP irresolute mapping, by definition f_l(A) is NVGPCS in X . Hence f is
NVGP continuous mapping.

Example 5.3: Let X = {a,b,c}, Y = {u,V,W} and

a b c
G = {X’ ([0.6,0.7];[0.2,0.3];[0.3,0.4]) ' ([0.5,0.8];[0.1,0.2];[0.2,0.5])) ' ([0.6,0.8];[0.1,0.4]; [o.2,o.4]>}’

u v w
G, =1V, , : .
? {y ([0.4,0.5];]0.7,0.8];[0.5,0.6]) " {[0.2,0.6];[0.8,0.9];[0.4,0.8]) <[0.1,o.6];[0.5,o.7];[o.4,o.9]>}
Then 7 = {0y, ,G,, 1y} and & = {0y, ,G,,1,, } are NVTson X and Y respectively. Define a mapping
f:(X,7)—>(Y,o)by f(a)=u, f(b)=vand f(c)=w. Then f is NVGP continuous mapping. Let

u \' W
N {y’ ([0.7,0.9];[0.1,0.2];[0.1,0.3]) " ([0.8,0.9];[0.1,0.2];[0.1,0.2]) " ([0.6,0.8];[0.2,0.3]; [o.2,o.4]>}'
is NVGPCSin Y . But f_l(B) is not NVGPCS in X . Therefore f is not NVGP irresolute mapping.

Theorem 5.4: A mapping f : (X ) T) - (Y,O') is NVGP irresolute mapping if and only if the inverse image
of each NVGPOS in Y is NVGPOS in X .

Proof: Necessity: Let A be NVGPOS in Y . This implies A® is NVGPCSin Y . Since f is NVGP irresolute
mapping, f _1(AC) is NVGPCS in X . Since f 71(A°): (f 71(A))C, f*(A) is N\VGPOS in X .
Sufficiency: The proof is obvious from the Definition 5.1.

Theorem 5.5: Let f : (X , r) — (Y,O') be NVGP irresolute mapping, then f is neutrosophic vague

irresolute mapping if X is NV pTl,2 space.

Proof: Let Abe NVCSin Y . Then A isNVGPCSin Y .Since f is NVGP irresolute mapping, ffl(A) is

NVGPCSin X, by hypothesis. Since X is NV T, space, f*(A) isNVCSin X .Hence f is
neutrosophic vague irresolute mapping.

Theorem 5.6: Let f : (X , z') —> (Y,O') be NVGP irresolute mapping, then f is NVP irresolute mapping if
X isNV )T, space.

Proof: Let A be NVPCSinY . Then A isNVGPCSinY . Since f is NVGP irresolute mapping, fﬁl(A) is

NVGPCSin X , by hypothesis. Since X is NV T;, space, f(A) isNVPCSin X .Hence f is NVP
irresolute mapping.
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Theorem 5.7: Let f :(X,r)—) (Y,O') and g :(Y,a)—) (Z,,u) be NVGP irresolute mapping, where
X,Yand Z are NVTS, then g o f is NVGP irresolute mapping.

Proof: Let A be NVGPCSinZ . Since g is NVGP irresolute mapping, g_l(A) is NVGPCSin Y . Since f

is NVGP irresolute mapping, f’l(g’l(A)) is NVGPCS in X . Hence (g o f)_l(A) is NVGPCS in X .
Therefore g o f is NVGP irresolute mapping.

Theorem 5.8: Let f : (X , T) - (Y,O') be NVGP irresolute mapping and g : (Y,O') - (Z,,u) is NVGP
continuous mapping, where X,Y and Z are NVTS, then g o f is NVGP continuous mapping.

Proof: Let A be NVCSinZ . Since g is NVGP continuous mapping, g’l(A) is NVGPCSin Y . Since f is

NVGP irresolute mapping, f _1(9 _1(A)) is NVGPCS in X . Hence (g o f)fl(A) is NVGPCS in X .
Therefore g o f is NVGP continuous mapping.

Theorem 5.9: Let f : (X , r) — (Y,O') be a mapping froma NVTS X intoa NVTS Y . Then the following

conditions are equivalentif X and Y are NV T, space.

i) f is NVGP irresolute mapping.

) f *(B) is NVGPOS in X for each NVGPOS B in Y .

i) £ (Nvpint(B))< NVpint(f (B)) for each NVS B of Y .
iv) NVpCI(f ’l(B))g f (NVpcl(B)) for each NVS B of Y .

Proof: (i) = (ii): It is obviously true.

(ii) = (iii): Let B be NVSin Y and NVpint(B)c B . Also f *(NVpint(B))< f *(B). Since
NVpint(B) is NVPOS in Y , itis NVGPOS in Y . Therefore f *(NVpint(B)) is NVGPOSin X , by
hypothesis. Since X is NV /T, space f *(NVpint(B)) is NVPOS in X . Hence

£ (NVpint(B)) = NVpint(f *(Nvpint(B)))< Nvpint(f *(B)).
(iif) = (iv): It is obvious by taking complement in (iii).
(iv) = (i): Let B be NVGPCSin Y . Since Y is NV T, , space, B isNVPCSin Y and NVpCI(B): B.

Hence f*(B)= f *(NVpcl(B)) 2 NVpCI(f _1(8)). Therefore NVpCI(f _l(B))= f *(B). This implies
f 71(8) is NVPCS and hence itis NVGPCS in X . Thus f is NVGP irresolute mapping.

Theorem 5.10: A mapping f :(X : T)—)(Y,G) is NVGP irresolute mapping from NVTS X into NVTS Y,
then f*(B)c NVpint(NVcI(f _1(8))) if X is NV T, space.
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Proof: Let B be NVGPOS in Y . Then by hypothesis f’l(B) isaNVGPOSin X . Since X is NV T
space, T *(B) isaNVPOSin X . Therefore NVpint(f ’1(8)): f*(B) and
£4(B)< NV int(NVel (f *(B))). Hence f*(B)< Nvpint(Nvel(f(B))).
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